《学术写作手册》(Academic Writing Handbook)– Version 1.0

适用于数学 / PDE / Reaction–Diffusion / 应用数学方向博士生
可直接复制到 Obsidian / Notion / Markdown

🎯 前言:为什么你需要这本手册

写论文时最痛苦的不是语言,而是:

不知道一个段落怎么起

不知道该用什么动词

逻辑连不起来

内容有了但写不顺

复制以前论文的句型很别扭

这本手册帮你解决这些问题:
你不需要从零开始写——只要打开它,选句型,套用即可。

Chapter 1. 论文的整体逻辑写法

1.1 如何写一个逻辑清晰的段落(PEEL 法)

P – Point(观点句)
一句话说明本段做什么。

E – Evidence(依据:理论/公式/引用/数据)

E – Explanation(解释意义,推论)

L – Link(连接下一段)

模板:

This section examines …
To justify this result, we first …
This implies that …
Therefore, we proceed to …

1.2 文章结构(适用于数学论文)

数学论文常见结构

Introduction

Preliminaries

Main Results

Proofs

Numerical Experiments

Conclusion

每节目标

Introduction:告诉读者“为什么要做 + 你做了什么”

Preliminaries:定义符号

Results:陈述定理

Proofs:证明

Simulations:展示数值

Conclusion:总结贡献、未来方向

1.3 逻辑连接词体系(非常重要)

表示“递进/进一步”

moreover

furthermore

in addition

besides

what is more

表示“转折/对比”

however

nevertheless

on the other hand

in contrast

whereas

表示“因果”

therefore

hence

thus

consequently

as a result

表示“举例/证明支持”

for example

for instance

in particular

notably

表示“总结/结论”

in summary

overall

in conclusion

to sum up

表示“强调”

indeed

in fact

notably

importantly

Chapter 2. 学术动词与表达体系(最实用)

下面是你经常需要的动词对比,我分门别类整理。

2.1 “表明/显示”类动词区别

(你的论文 Introduction、Results 中最常用)

动词 强度 用法 示例
show 中 直接展示事实 The result shows that …
demonstrate 强 通过推理/证明展示 We demonstrate that the solution exists.
reveal 强 揭示隐藏的规律 The analysis reveals the key mechanism.
indicate 弱 间接、倾向性 The behavior indicates that …
suggest 弱–中 提出可能解释 This suggests that the domain expansion affects persistence.

推荐使用:show / demonstrate / reveal

2.2 “提出/假设/争论”类动词

动词 含义 用法
propose 提出一种方法/模型 We propose a reaction–diffusion model.
suggest 提出可能性 We suggest that domain growth plays a role.
argue 提出论点,带推理 We argue that the solution is unique.
claim 声称(强,但略主观) Some authors claim that…(谨慎用)
assume 假设条件 We assume that $g$ is monotone.

2.3 “描述/展现”类动词

动词 含义 用法
describe 给出一般性描述 We describe the model as follows.
present 正式呈现 We present our main theorem.
illustrate 用例子/图来说明 Fig. 1 illustrates the dynamics.
depict 图像“描绘” The figure depicts the solution profile.
capture 抓住特征 The function captures the periodicity.
represent 表示数学对象 The operator represents …

2.4 “分析/模拟/建模”类

analyze

investigate

examine

model

simulate

evaluate

模板句:

We analyze the long-term behavior of the solution.
We investigate how domain expansion affects persistence.
We model the population dynamics by …
We conduct numerical simulations to illustrate …

2.5 “变化”类动词

increase / decrease

grow / decline

stabilize

converge

oscillate

fluctuate

模板:

The solution converges to its steady state.
The boundary oscillates periodically.
The population density decreases as …

Chapter 3. 学术句型(可直接套用)

3.1 定义概念

We define the function ϕ as follows.
Let Ω be a bounded domain in R^n.
We denote by λ_0 the principal eigenvalue.

3.2 提出现象 / 引入问题

A fundamental question in population dynamics is …
Motivated by this observation, we investigate …
This raises the following problem:

3.3 描述已有研究(文献综述)

Previous studies have focused on …
It has been shown that …
Several authors have established …

3.4 陈述结果(定理句型)

Our main result can be stated as follows.
Theorem 1.1 establishes the existence of …
We now present the proof of Theorem 2.3.

3.5 强调贡献

The main contributions of this work are summarized as follows:
(1) …
(2) …
(3) …

3.6 写方法(Models / Methods)

We consider the following reaction–diffusion model:
We assume that the domain evolves according to …
Under these assumptions, the system becomes …

3.7 写数值结果(Numerical Experiments)

Figure 2 illustrates the time evolution of …
The numerical results show that …
We observe that the solution stabilizes when …

3.8 写总结(Conclusion)

In conclusion, we have analyzed …
Our results reveal that …
Future work may focus on …

Chapter 4. 论文各部分的写作框架

4.1 Introduction 的五步法(通用)

背景:为什么有趣?

文献:别人做了什么?

缺口:什么地方还没被解决?

贡献:你做了什么?

结构:文章怎么组织?

可直接套模板:

In recent years, there has been growing interest in …
Many works have investigated …
However, less attention has been paid to …
In this paper, we address this gap by …
The paper is organized as follows:

4.2 Preliminaries

In this section, we recall several basic notions.
Let Ω ⊂ R^n be a bounded domain.
We denote by …
We will frequently use the following lemma.

4.3 Main Results

We now present our main theorem.
Theorem 2.1. Assume that …
Then the solution satisfies …

4.4 Proofs

Proof. We divide the proof into three steps.
Step 1. …
Step 2. …
Step 3. …
This completes the proof.

4.5 Numerical Experiments

We perform numerical simulations to support our theoretical results.
We take Ω_t = (0, ρ(t)π) with ρ(t) = …
For each case, we illustrate the solution profiles.

4.6 Conclusion

This work has investigated …
Our results demonstrate that …
Further extensions include …

Chapter 5. 常见错误与检查清单(必备)

5.1 中式英语常见问题

句子太长 → 应拆分

名词化过多

逻辑跳跃

被动语态滥用

重复表达(时而 show,时而 demonstrate)

5.2 论文提交前的 Checklist

结构检查

Introduction 有完整五步

Contributions 清晰

Each section has a purpose sentence

语言检查

每段首句明确主题

动词使用精确

符号一致

数学检查

所有定理已编号

引用的 lemma 已解释

证明中没有逻辑跳跃

Appendix A. 数学写作常用句型(特为你)

We consider the initial-boundary value problem …
Let u(t,x) denote the population density.
We show that the solution remains uniformly bounded.
We prove the existence of a unique positive periodic solution.
The principal eigenvalue plays a crucial role in …

-------------本文结束 感谢阅读-------------